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A cluster expansion of the statistical mechanical density operator for a general 
linear chain model with nearest-neighbor interactions is made. This expansion is 
then shown to lead to an expansion of a generalized transfer matrix, whose 
maximum eigenvalue is the per-site partition function. A number of computa- 
tional features, as well as some illustrative examples, of this approach are 
described. 

KEY WORDS: Ising model; Heisenberg model; transfer matrix; cluster 
expansion. 

1. INTRODUCTION 

We consider linear chain models with nearest-neighbor interactions only. 
Such models are widely applicable in describing, for example, 

(a) magnetic properties of many crystals with linear chains of super- 
exchange-coupled paramagnetic transition metal ions; 

(b) magnetic and electric properties of many crystals of aromatic 
donors and/or  acceptors; 

(c) conformational distributions in linear polymers; 
(d) orientational or substitutional disorder in many linear chain 

molecular crystals, 
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(e) phonon and/or  electronic structure of linear chain polymers; 
(f) motion of adsorbed molecules on linear biopolymers, on very 

anisotropic crystal surfaces, or along "channels" within certain 
crystals; 

(g) properties of linear chain models composed from, say, m parallel 
and interacting subchains such that their properties can be ex- 
trapolated to r n ~  ~ so as to obtain results for a variety of 
two-dimensional models, with a variety of applications. 

For the more refined versions of these various models in (a)-(g) one 
typically finds that accurate quantitative thermodynamic properties are 
difficult to obtain. [Even in cases (c) and (d) above, where generalized but 
exactly soluble Ising models have almost always been employed so far, 
more refined models encounter difficulties in solution; this occurs, for 
instance in (c), when one allows for conformational twisting motions by 
including nonzero matrix elements between configurations representing 
different conformations.] In some cases there is difficulty even with the 
more naively simple models. 

Here we describe a generalized transfer matrix method for computing 
the thermodynamic properties of such linear models. Our transfer matrix is 
developed in a series expansion such that the ( Q -  1)th term requires 
numerical (or analytic) results (generally in the form of both eigenvalues 
and correlation functions) for subchains with up to Q sites. When truncat- 
ing this expansion at Q sites the present method yields free energies which 
are accurate through order [Q/2] in terms of a perturbation expansion 
about any zero-order model of the generalized Ising type. Hence our 
generalized transfer matrix expansion truncates exactly at the first term for 
any generalized Ising model, and indeed it then takes the form of the 
well-known transfer matrix which has previously (1-4) been applied to such 
models. This relation is further emphasized if we note that in general the 
maximum eigenvalue of our generalized transfer matrix is the "per-site" 
partition function of an infinite chain. The relation of this generalized 
transfer matrix to generalized Ising models, its high-temperature conver- 
gence properties, and its systematic incorporation of finite subchain calcu- 
lations suggest that this method is of use in obtaining accurate approxima- 
tions to a variety of linear chain models. 

The characterization of the problem and our fundamental approach is 
developed in Sections 2, 3, and 4. In Sections 5, 6, 7, 9, and 12 various 
aspects of the theory are further refined for use in different sorts of 
applications. Sections 8, 10, l l, and 12 present some illustrative examples. 
Finally some supplementary material is given in the Appendices. 
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2. LINEAR CHAIN MODELS 

We consider models which are defined on a space with a basis of 
product kets 

] r ( N ) ) - - [ r  I �9 r 2 . . . . .  rN), r ( N )  ~ r l r 2 . . ,  r N ranging (2.1) 

where r i is a site-state label for site i. Our models are to be defined in terms 
of 'operators such as X7 t which shifts the site states on site i 

X T ' l r ( U ) )  = 8,,rilrl " r 2 . . . . .  ri_ , �9 s .  ri+ 1 . . . . .  rN) (2.2) 

so that 

[ xirs, x T ]  = 0 ,  i ~=j 

xr~xi 'u= 8s, X F (2.3) 

~-~ZT= 1 
r 

Our linear chain Hamiltonian with nearest-neighbor interactions only is 

N - - I  

H ~ HI__+N ~ ~ Hii+, ( 2 . 4 )  
i = I  

where the H ,+ ,  affect only sites i and i + 1, and hence are of the form 

H,+ l = ~ ( r .  s l t l , + , l t .  1,1>xirtg;~.t (2.5) 
rgtbl 

Models satisfying this description include the nearest-neighbor linear 
Heisenberg, Ising, and lattice-gas models. For instance, for the isotropic 
spin-I /2  Heisenberg model the r i are a and fl spin states and the Hamilto- 
nian may be represented in terms of X-operators as indicated in Section 10. 
Single-site terms, such as H i acting only on the site states of site i, may be 
included in Hi_li o r  Hii+l or divided up between Hi_li and Hii+l. In 
Appendix A we also show that second quantized Fermion models can be 
easily expressed so as to satisfy the conditions of Eq. (2.1) to (2.5). Hence 
the allowed models also include a variety of Hubbard, PPP, and multiband 
electronic models. 

Clearly the conditions upon H imply 

[ Oii+ l,Ojj+ l ] ~- 0, i ~ j +_ 1 (2.6) 

If (2.6) also holds for i = j + - 1 ,  so that all H,+ 1 commute, then H is a 
generalized Ising (or lattice-gas) model. The common Ising-type models, for 
which there exists a site-state basis with 

( r .  s[Hii+,lt,  u~--~r, ds, (2.7) 

are clearly examples of such generalized Ising models. It is well known that 



558 Klein and Welsher 

the usual (1-4) transfer matrix method solves these Ising-type models ex- 
actly. 

In the following we shall use the notation 

n- - I  

nm-->n ~ E Hii+l, Om-~n =- e-/m"~", m < n (2.8) 
i=m 

Further the (unnormalized) density operator Pl--,N will often be abbreviated 
to p. 

3. CLUSTER EXPANSION OF DENSITY OPERATORS 

If H is an Ising-type model, then the first step in deriving the transfer 
matrix (between sites 1 and 2) is to factor p to Pl2P2--,u. However, for a 
more general H this factorization requires a correction. Most simply this 
correction might involve a factorization with the first term involving H12 
and H23 while the second term would involve just H3_~N. Generally again 
such a simple correction would itself require an additional "higher" correc- 
tion, which in turn one might try to factor. Such ideas are suggestive and 
motivate us to write 

N - - I  

P ~- E ~I---)iPi--~N ( 3 . 1 )  
i = 2  

where ~1-.i is a factor affecting only sites 1 to i. For chain lengths 
N = 2,3,4 . . . .  (3.1) yields 

012 = ~12 

Pl-~3 = ~12P23 + ~1-~3 (3.2) 

101-->4 = ~12~2-->4 + ~1--~3~34 + ~1--~4 

etc. 

and we see that the ~-factors are consistently and uniquely determined in 
an iterative manner. Inversion of these equations readily leads to 

~12 = P12 

~1--~3 = 101--->3 - -  012023 (3.3) 

~1--->4 ~--- 01--+4 - -  P1202--->4 --  01--+3034 -1" 012/923034 

etc., or generally 

n- - I  

~l-'-~n+l~-~-Pl--+n+l -1- E ( - - 1 )  1 E pl__~ilDil__>i2"''piz_~n+l ( 3 . 4 )  
/=1  i1<i2<  �9 -- <i t 

where of course 1 </~ and i t < n + 1. Further we may express the various 
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O's exclusively in terms of the ~'s 

P12 ~--" ~12 

/91"->3 ~" ~12~23 "+" ~1-->3 (3 .5)  

01--+4 ~--- ~12~23~34 + ~12~2--+4 q- ~1--+3~34 "~ ~1-:>4 

etc., or generally 

n-- I  

Pl:-+n +1 = ~l-+n+I "~- Z E ~l-+i,~i,-->i2"'" ~i,-+'n +1 (3 .6)  
1=1 i1<i2< " ' '  <i/ 

where again i < i 1 and i t < n + 1. Clearly there is a duality in equations of 
this section such that +p  and - ~  may be interchanged. Thus (3.4) and 
(3.6) are duals, (3.3) and (3.5) are duals, and 

N--1 

~I--~N = D1---~N -- E Pl-+i~i---+N (3 .7 )  
i=2  

is the dual to (3.1). 
In an application we could use (3.3) and (3.4) to determine the ~'s up 

through some order, say those involving up to Q sites, and then approxi- 
mate 0 via (3.6) omitting all terms with a ~ involving more than Q sites. We 
call this a Q-site decoupling approximation, and in Appendix B two 
theorems indicating the accuracy of such approximations are indicated. In 
particular it is shown that this approximation is accurate to order Q - 1 in 
the high-temperature expansion in powers of ft. We also show that if H is 
expressed as a zero-order generalized Ising model H ~ plus a perturbation 
~V, then this approximation is accurate through order [( Q -  1)/2] in the 
perturbation expansion in powers of ~. Since this result is true regardless of 
the choice of generalized Ising model H ~ it is true of the resolution in 
which H ~ is "as much like" H as possible. 

4. G E N E R A L I Z E D  T R A N S F E R  M A T R I X  

Here we develop a computationally practical expansion of the parti- 
tion function 

Z = Trp = Tre -~q (4.1) 

through the use of the Q-site decoupling approximation of Section 3. In this 
development we define 

Zi ~- T r i ~ N P i ~ u / T r i +  I~NPi+ I~N (4.2) 

c[ s =_ Tri_+u(Xff Pi_+u)/Tr,_+NPi_+N 

where Tri_+j indicates a trace just over site states for sites i--+j, with i < j .  
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Here  c( s is an expectat ion value for an end site on a chain of length 
N - i + 1, and z i is the per-site part i t ion function, such that  

N - I  

Z = I -[  z i  ( 4 . 3 )  
i = l  

N o w  using the cluster expansion of (3.1) in our  definit ion of c[', we obtain  

Tr  ,r Tri - - -~N(gsr~i i+ lP i+  1- - ->N)  i -->N(gi  ~i--->i+2Pi+2-->N) 
~ =  + + . . -  (4.4) 

Ci z i T r i  + I--> NPi + 1-,*N ZiZi + I T r i  + 2--->NPi + 2 ~ N  

Next  we recall the sum of (2.3) and  note that  

1Xi+ lP i+  I-->N) ~ = ~ '  Xri-,N(Xi+lXf~'~ii+ " 
Ct 

t~u ziTri + 1--->NPi + I-->N 

+ T r i - " ( X i v 2 X i % - " + # ' t ~ - 2 0 ~ + 2 " N )  + . . .  1 

ZiZi+ I T r i +  2 ~ N P i +  2--->N J 
~tu { 1 Tri ,+l(XSr~, i+lX,~l!  ,+1 - -  "~ C tu 

Z i 

+ 1 Tr  [ X  sr~- y t u  "~ctU 1 i-->i+2k i %i--H+2~'~i+2} i+2  + " ' "  (4.5) 
ZiZi + 1 J 

This is a recursion formula  expressing an expectat ion value e( '  for a general 
chain of length N - i + 1 in terms of those for shorter chains. 

N o w  we consider an infinite linear chain with translationally equiva- 
lent sites and  bonds.  In  this case we m a y  identify limiting values 

e r S ~  lim e[" (4.6) 
N -- i--> oo 

z =  lim z~= lim Z 1/N 
N--->---> ~ N--> oo 

and we introduce a generalized transfer matr ix  T with (rs, tu)th element  

mrs'tu =- E 1 rs,tu (4.7) 
j >1 2 Z j ------~ T(j)  

where 

Then  (4.5) becomes  

o r  

rs,tu sr tu T(j) ~Tr ,_~ j (X  l ~I_~jXj ) 

C r s :  ~tu E ~ Y ~  u c t u :  1 2 yrs'tUctU 
j >>- 2 g tu 

(4.8) 

(4.9) 

Tc = zc (4.10) 
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where c is simply the column vector with (rs)th element c rs. Thus the 
per-site partition function z and the free energy per site 

1 lim l l n Z = - - ~ l n z  (4.11) 
f =  /3 ~v~oo 

are obtained via an eigenvalue to our generalized transfer matrix T. The 
Q-site decoupling approximation for T and z is "simply implemented by 
truncating the j-sum of (4.9) beyond j = Q. 

The components T(n ) of the transfer matrix T are conveniently com- 
puted in terms of "correlation" matrices W(j) with (rs, tu)th element which 
is a correlation function 

~, t .  _ T r  X sr X t" W(j) ~ ]---~j 1 IOl--~.j j (4.12) 

Such unnormalized end-to-end correlation functions are, of course, obtain- 
able for finite chains via standard computational procedures. The desired 
relation of the "1"(,) now follows from (3.7), 

n - 2  

T(n ) = W(,,) - ~ W(n_i) T(i+l), 
i = 1  

n~>3 

T(2 ) = W(2 ) (4.13) 

so that the T(.) can be built up in a recursive manner. 
In order to recognize the desired eigenvalue z to T one could start at 

high temperatures, where (as shown in Appendix C) T becomes indepen- 
dent of z and z is the maximum eigenvalue, which is nondegenerate. Then 
one could follow this maximum eigenvalue down in temperature, using the 
z value of the preceding slightly higher temperature as an initial estimate 
for a self-consistizing iteration scheme for z and T (since T itself generally is 
a function of z). The only ambiguity which might arise in this procedure is 
the instance in which some other eigenvalue of T would come up and c r o s s  

over the one we are following down in temperature. However, this never 
occurs for the T matrix of an Ising-type model, since in that case (as shown 
in Appendix C also) T essentially reduces to the ordinary type (]-4) of 
transfer matrix. In the event that the maximum eigenvalue is involved in a 
crossing, we realize that an (infinitesimally) small perturbation of H should 
make the crossing forbidden so that the maximum eigenvalue should still 
be followed after the crossing. Consequently we see that such a crossing 
would imply a phase transition, which, however, is a phenomenon generally 
believed not to occur in short-range one-dimensional systems. 
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5. SUPER TRANSFER MATRIX 

In Section 4 the determination of the per-site partition function is 
presented in a nonlinear framework, since T itself generally depends upon 
z. However the problems at least within the Q-site decoupling approxima- 
tion, may be cast in an entirely linear form via the super transfer matrix ~- 
composed from ( Q  - 1) 2 submatrices with the (/j)th submatrix being 

~ T ( j ) ,  i = 2 

~-'Y i J + -- 1, i =  1 (5.1) 
[ 0, otherwise 

where the row and column labels i , j  E {2,3 . . . . .  Q) .  Now we consider 
the eigenvalue problem 

~ c  = zC  (5.2) 

and let C ( 2 ) ,  C ( 3 ) ,  . . . , C(Q) be the portions o f  the column eigenvector C 
which are associated with the blocking of 9- into submatrices. Then (5.2) is 
equivalent to the set of equations 

T(2)C(2 ) +T(3)C(3 ) + . . .  +T(Q)C(Q) = 2C(2 ) 

C ( j )  ~-- zC(j+ 1), j = 2 to Q - 1 (5.3) 

These last Q - 2  equations are invertible to 

1 
C(j+ I) ---" z j---- T C(2), j = 2 to Q - I (5.4) 

so that on substituting into the first of the equations of (5.3), we obtain 

{ 1 T I T }C(2 ) zC(2 ) (5.5)  T ( 2 ) + z  ( 3 ) + ' ' "  + ~  (Q) = 

Since this is recognized to be identical to (4.10), we see that (5.2) is indeed a 
linear formulation yielding the desired per-site partition function, as an 
eigenvalue. Further since at high temperatures the T(i), i > 3, asymptoti- 
cally vanish, the desired z is the maximum eigenvalue at least in this region. 
Finally C(2 ) may he identified as e, if the correct normalization 

r r  ~ s C r r  - -  C(2 ) - 1 (5.6) 
r r 

is chosen. 

6. THERMODYNAMIC PROPERTIES 

Here we consider the thermodynamic properties which are obtained as 
first and second derivatives of the free energy. Hence we wish to compute 
derivatives of z, and since z is an eigenvalue to ~-, we may do so using a 



Cluster Expansion and Generalized Transfer Matrices 563 

rather straightforward modification (as described in Appendix D) of the 
standard perturbation theory. Basically, the non-Hermiticity of ~ entails 
the introduction of a left (row) eigenvector A t with the same eigenvalue as 
the right (column) eigenvector C, 

At0" = zA t (6.1) 

Then letting A(2 ) , A(3 ) . . . . .  A(Q) be the portions of A associated with the 
blocking of ~ into submatrices, we may follow the procedure of (5.5)-(5.7) 
to show that 

A~j) = 1 A~2) (i, (6.2) 
i=j 

and that A(2 ) is an eigenvector to T with eigenvalue z. Now, presuming 
Hii+l is symmetric with respect to interchange of site labels i and i + l, so 
that T is Hermitian, it follows that A(2 ) is the same as C(2 ) except possibly 
for normalization. This we specify via 

ArC = 1 (6.3) 

and hence, via (5.4) and (6.2), 

i -  1 C~2)T(I)C(2) A(2 ) = C(2) (6.4) 
i=2 

First-order perturbation formulas now give 

Oz _ At ~"  a at 3T(j) (6.5) 
j=2 

O2T(J ) ~.t 0T(J) 6e O 0T(;) } 
~2Z -- ~ A~2 ) ~ C(j) + E C(i) (6.6) 0h 2 j=2 z'r'~(2) - - - ~  at'J'2i=2 - ' ~  

where we require the submatrices ~j,2 from the first block column of the 
generalized inverse Ol, of z - ~ ,  as indicated in Appendix D. A formula for 
these ~j,2 is given in Appendix E. Finally the derivatives of the transfer 
matrix components T(j) are calculated using (4.13) from the derivatives of 
finite chain correlation functions W(i ). For instance, 

~)T(j) OW(j) 
- _ _  T(,.+1 ) +W(j_ , . )  ~ ]  (6.7) 

0h ~X i= 1 0h 

The (OW(i)/0h), involving derivatives of the Ol--)i, presumably are comput- 
able via conventional procedures, as in the case when h is the temperature 
or magnetic field, of use in computing internal energies or susceptibilities. 
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. LOCAL SYMMETRIES 

Here we investigate the consequences arising from local (or site) 
symmetries, for site i, with operators 

A, =- ~,  < rlAils > X[ s 
r s  

for which 

(7.1) 

[ H i_ , i ,A i ]  = [ Hii+ l ,A i ]  = 0 (7.2) 
If the H; are Hermitean, it follows that h i also commutes with H i li 

- -  _ J j + l  

and 1-1.+ 1 and that the algebra ~i of local symmetry operators for site i is 
self-adjoint. Consequently 4 ~i is "semisimple" and has a (matric) basis of 
operators 

i 

{Ai':; a ranging, a,b = 1 t o f  ~ } (7.3) 

such that 

A abhcd t~ ~ And 
io~ ~xifl = aft bcZXia 

( A a b ~ t  ba (7.4) ia ] ~-- Ai~ 

E A / 7 =  1 
~ a  

Since the Ai~ ~ mutually commute and are orthogonal projection operators, 
there is a basis of site states for site i such that 

~ a  

A i ~  = E x i  rr (7.5) 
r 

where the r-sum is over a set, say $ (an), of site-state indices identified with 
an. Clearly these $ (an) are disjoint amd their union yields the whole basis 
of site states. Further there is a one-to-one correspondence between the 
elements of $(aa) and $(ab), say r~ E $(aa) corresponds to r b E $(ab), 
such that 

~ a  

Aia: = E X i  rarb (7.6) 
ra 

Now realizing that the algebra of local symmetry operators has the 
above-mentioned features, we see that for r E $ (an) 

<r. tlHii+lls, u) = ( r .  t*aanlkia ii+l S " U) 

= (r" t[nii+lAa~[s " u) = O, s ~2 $(aa) (7.7) 

4Although this is implicit in the theory of finite C* algebras, the results quoted here are given 
in the present language in Theorems IV.1 and IV.2 of Ref. 6. 
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Further if r 9, s b ~ $ (aa)  correspond to r b, s b ~ 5 (ab), then 

( r~ .  t lHii+,ls~, u )  = ( r~ .  t[Aa~Hg,+l[s~ . u )  

_--- ( r  a . t ] A i a A i a H i i + l [ S a  ba U)  

= (to.  tl(A  )*nii+lA  lSa" u) = (rb" t[nii+l]sb" U) 

(7.8) 
Here (7.7) says Hii+l is block-diagonalized with each block labeled by an 
aa, while (7.8) identifies different blocks with the same a label as having 
identical matrix elements. Of course the local symmetry operators for site 
i + 1 provide additional block diagonalization and identification. Indeed 
with site symmetries for all sites, all the Hj +1 can be blocked up as well as 
functions (such as the p's, W's, and T's) o~them. 

If all the $ (aa)  have just a single site state, then H is an Ising-type 
model. Moreover, some important simplifications arise if any of the Ai~ are 
primitive in the sense that $ (aa) has just one site state. For instance, the 
product ket of (3.1) is an eigenket to H if each r i is in such a single-member 
$ (aa).  Also 

( r ,  r 2 �9 r 3 . . . . .  r j .  u[~]_V+llS, r 2 �9 r 3 . . . . .  /) .  t )  = 0, j / >  2 (7.9) 

if any ri, i = 2 to j ,  is of a primitive symmetry. This result is seen to hold on 
using the lemma of Appendix B and noting that the portions of H i_ li and 
Hii+l surviving in this matrix element of (7.9) commute with one another. 
As a consequence of (7.9) the computation of the three- and more-site 
components of T are simplified, 

To+~>rs,,u __ ~ ,  ( r .  r 2 . r  3 . . . . . .  t) U l ~ l _ ~ j + l l S  �9 r 2 �9 r 3 . . . . .  ~ .  t )  
r2,r3 . . . . .  /~ 

(7.10) 

where the sum here is restricted to go only over those site states of 
nonprimitive symmetries. If also the ground state is of primitive symmetry, 
then the generalized transfer matrix approach displays low-temperature 
convergence properties; an example of this is described in the following 
section. 

8. SOME EXAMPLES 

One example is the Heisenberg-Ising model, (7) in which each site 
consists of a pair of sp in- l /2  atoms coupled together by a Heisenberg 
interaction while there is a classical spin-1/2 Ising-type interaction between 
the nearer atoms of an adjacent pair of sites. Taking the four site states to 
be a singlet s and three components +,  0, - of a triplet, we obtain the 
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Hamiltonian in the form 

N 

H =  J Z ( x ,  ++ + x?~  + x ,  - -  - xT" ) 
i = 1  

N - 1  

- X~0 ~ - t -m E ( ( x i  ++ - x i -  ) ( x i ; ~  - x i ~ - l ) -  ( x i ~  x ; ~ 1 7 6  "~ i + l ] ]  
i = l  

(8.1) 

In this case the local symmetry algebra ~g for each site i is of dimension 3 
with three orthogonal projection operators 

Ag+=Xg ++, A i _ = X  i - - ,  and Ag o=Xg ~176  F (8.2) 

The three associated site-state index sets $ (aa), abbreviated to g(a)  since 
f "  = 1, are 

$ ( + ) = { + } ,  $ ( - ) = { - } ,  and $ (0 )={0 , s}  (8.3) 

Since there is only one index set $ (0) here with more than one index, the 
computation of the T(j) and W(j) reduces to a relatively simply problem 
with just two states per site (except possibly the end sites of the finite 
subchain). Indeed this latter problem is solved exactly, (7) so that z can be 
obtained exactly by our present method. 

Another model of a similar nature is described by Mattis and Nam. (8) 
Indeed their transformed Hamiltonian (in terms of their P 's  and J 's)  is 
readily seen to yield a three-dimensional local symmetry algebra much like 
that of (8.2) here. Again the relevant two-state per site model has been 
solved, so that z can be obtained exactly. 

A third model we mention is that of Zawadowski and Cohen, (9) where 
again each site consists of two "atoms," between which there is shared a 
single unpaired electron. The electron may be transferred between the two 
atoms of a site, while two electrons on two adjacent atoms of two adjacent 
sites undergo Coulomb repulsion and exchange coupling. Thus, denoting 
the four site states by aa, aft, ba, b/3 depending on whether the a or b atom 
of a site is occupied by an a or/3 spin electron, we obtain the Hamiltonian 
a s  

Here there does not 
note that if T = O, 

N 

/ r  r E  + x? ~176 ) 
i = l  o 

N - 1  N--1 
~'~ x bo, box  a.r , a.r -I- ~'~ y bo, trr y a.r, ao + u, Z g ,-+1 - J 2 (8.4) ~ a  zxi 2xg+l  

i = 1  o,~- i = 1  o,~" 

seem to be any local symmetry. But it is of interest to 
we obtain a simple example (which in our present 
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nomenclature) is a generalized Ising model although not an Ising-type 
model. 

. GLOBAL SYMMETRIES  

In this section we investigate the consequences of a global symmetry 

E ' .... v w  G T(j) )Tr1_+jX 1 ~ l_+jXj 
tu tu 

-- 1 sr vw = Trl_~jG 1 Xl  GI~I-+jXj 
m_ T r  ~ -- 1 ysrg~,  ~ y v w  

1 - ~ j ' J  l~->j +x I "Jl-~j'al-->j+~j 

= Tr X ~ ~ r~wc:_ -- 1 I--->j l'Jl--->j'~l---Yj"xj ~Jl--->j (9.5) 

group 8 such that 

[ a i -+ j ,  n i - + j ]  ~ 0  

ai_~j-~ GiGi+l " " " Gj E ~i_+j (9.1) 

=--E r . ( G ) x :  
r s  

with the matrices F(G) being unitary. Further we presume that the ordinary 
group orthogonality properties for the irreducible representations of 
apply 

1 d~B~b 8a,b, (9.2) 

where F~(G) is the ath irreducible representation matrix of G ~ 9, f~ is the 
dimension of a, S indicates the appropriate sum a n d / o r  integration over 
group elements, and v is the group volume. The group 6 might be realized 
as a Lie group obtained from a Lie algebra with generators A such that 

[A,+. H,+j] =o 

Ai_~ j = A i + Ai+ 1 + �9 �9 �9 + Ay (9.3) 

ak = E F,:(A)X/s 
r s  

or ~ might represent a discrete set of rotations about the chain axis of our 
linear model. Finally we also define the matrices G with (rs, tu)th element 

G ' * "  =- Fr,( G )F~,( G - '), G ~ ~ (9.4) 

The set _~ of these matrices is readily verified to be a homomorphic image 
of (i.e., representation) ~. 

Now 
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But since GI_ d 
G>+j commutes with ~l+j 

Consequently 

commutes with all Hc_,f for 1 < i' < j '  < j ,  we see that 

[G,T] =0 ,  Geg (9.7) 

a result which obviously persists even in the Q-site approximation for the 
transfer matrix. Thus T (and ff also) may be block-diagonalized with 
different blocks of T labeled by different irreducible representations of 
(or ~). Now the transformation properties of the eigenvector c with respect 
to the G ~ 6 can be studied in a similar manner, 

I'rt(a )r..(a -~)Tr,__)NX~tP,+N 
~..G"'"c"= lim 
tu N- ->~ T r I _ + N O I ~ N  

Trl+u G 1- IX~rGlOl_~U 
= lim 

N---> oo Tr  I_~NPl_~N 

Tr X srf* ~ -- l 
1--~N 1 ( I I - + N P I - + N ( J I - ~ N  = lim 

N---~e~ T r  l_~ N P l _ ~  N 

rs,tu tu,vw = E T ( j )  G (9 .6 )  
tu 

Hence 

= c r" (9.8) 

Gc = c, G ~ ~ (9.9) 

and e is clearly associated with the block of T labeled by the identity 
irreducible representation. 

This desired block of T is clearly identified as the nonzero block of 

1 S G T = l  S TG (9.10) 
1) G@@ I) G ~  

An explicit formula for this nonzero block is obtained if we choose the site 
states for site i to be symmetry adapted to 6i, so that a typical site state is 
[ipaa) such that 

r .  . . . .  z . (G )  = 8o.a. er:~(G) ( 9 . 1 1 )  

G]ioo~a) = Y~, F~,a(G )[ ipe~a') 
a' 

and 

rs,lu tu,vw sr vw -- l 
E G T( j )  = Tr1_,jX 1 ~I_>jGI__>jXj GI_>j  
tu 

$r ~w -- =Tr l - -+ jX!  ~l-~jg.Xj Gj 1 

= E r , v ( G ) r w . ( a - 1  ,r , .  )Trl+jXl (I-~jXj. 
tu 
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Then the (oaao'a'a', vw) element of (9.10) is 

1 S E E GPaaP'a'a"~176 
I) G @~ oflb o' fl'b' 

l s y ~ y ~  ~ o, = - aooa~Br~  (G)~O,o,ao,~,ro,~,(G - ' ) T  ~176 ~ 
t) G eg oflb o'fl'b' 

Z 1 = bb' --I) G~8 Fab(G)rb,a,(  a' - l)TPabo%'b',vw 

1 Z TPabo'ab'vw 
= ~aa'~aa" ~ b 

(9.12) 

But a similar result applies using the right-hand side of (9.10), so that the 
(paap'a'a', oflbo'fl'b') element is in fact just 

~ aa,~aa,~flfl,~bb, l 
( fyB)1/2  

where 

"~p~p',oBo' (9.13) 

Cp~o',o~o' ~ (fffB1)1/2 ~cd T~176176176 (9.14) 

Now the (invariant) space of vectors upon which the matrix with elements 
as in (9.13) acts to give a generally nonzero result consists of those vectors v 
with components 

I.) oflb,o" fl'b' = ~fl[3"~bb '~ o8o' (9.15) 

Hence the identity irreducible representation block of T is just the matrix t 
of (9.14), acting on a space of vectors r with components t3 ~176 Often t 
yields a much smaller matrix to diagonalize. Finally by appending a 
subscript (j) in (9.14) we can define matrices TCj), and by appending carats 
in (5.1) obtain the block ~ of 5" which is of present interest. 

10. ISOTROPIC HEISENBERG MODELS 

In this section we consider the spin-s Heisenberg model 

+ -  ' - +  ) 
2S 2 i= 1 2 (Si Si+l + i Si+ 1) "1- Si'$iZ+l 

for a linear chain. Here the site states for a site i are labeled by their 
eigenvalues m = - s ,  - s  + 1 , . . . ,  + s to the s 7 operator. If we wish we 
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can express the s~ appearing in H in terms of our X-operators via 
+ s  

SiF = Z ~k t~ ( s ,m)X i  m+t~'m 
DI ~ --S 

[ [ s ( s + l ) - m ( m + l ) ]  '/2 , ~ =  + 

X~(s ,m)=l~ ,  ~ = z  (10.2) 

s ( s + l )  r e ( m -  1)] 1/2 , / x = -  

For this model H commutes with the global symmetry operators s +, s ~, and 
s -  which are generators for the Lie algebra of the familiar $ ~(2)  group. 

Since all the site states of a given site belong to a simple irreducible 
representation of $ ~(2),  the desired block "r of the transfer matrix is one 
dimensional, and 

1 Z r . . . .  'm' (10.3) 
Z = r  2S"[-~ ram' 

Now 
A A r , 1 E T~jm) 'ram 
T(j) ~ 2s + 1 ram' 

_ 1 ~ Tr X ''me X m'm'- 1 
2s + 1 ,~j , Sl-,j j 2s + 1 Trl~j~l-~J ram' 

and in analogy to (4.12) and (4.13) we have 
n--2  

r  = V~/(n) - -  Z VV( n -  1)X( i+  l), 
i=1  

^ A 

T(2 ) = W ( 2  ) 

^ 1 
~/(J) - -  2s + 1 Trl-~jPl-~J 

n~>3 

(10.4) 

(lO.5) 

Thus for the isotropic Heisenberg model all we require to compute our 
eigenvalue z is the sequence of finite chain partition functions. We also 
note that the present treatment exactly solves the infinite-spin Heisenberg 
model since 

lim [ s~ s [ ]  s~oo -~-'-~- = 0  (10.6) 

The two-site Heisenberg model is readily solved, with the eigenkets 
being the states of total spin s12 = 0, 1 . . . . .  2s. Thus 

2s 
A ^ 1 ~ (2s,2 + 1)exp T(2) = V~(2) - 2s + 1 

S 1 2 = 0  

•a {s,2(s,2 + 1) - 2s (s  + l ) }  (10.7) 
4 s  2 
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giving the two-site approximation for z. For three sites the eigenkets to 
(10.1) are obtained by first coupling sl and s 3 to a spin s13 = 0, 1 . . . . .  2s, 
then second coupling s~3 and s2 to a total spin s m = Isl3 - sl, Js13 - s I + 
i , . . . ,  s + s~3. Thus 

S+Sl 3 
1 ~ (2s12 3 + 1)exp 

W(3)- 2s + 1 s~3=o sm=ls.-sl 

-- /~J (s123(s123 "l- 1) - S13(s13 -1- 1) -- s(s -[- 1)) (10.8) 
4s 2 

and the three-site approximation for the symmetry-reduced super transfer 
matrix is 

~-= W(2) W(3) - W(2) (10.9) 
1 0 

and the three-site approximation for z, obtained as an eigenvalue to ~, is 
A A 

= '  - (10.10) Z ~W(2 ) .4_ (W(3) 43 b'~12,,(2))\]/2 

To obtain the internal energy and specific heat in the three-site 
approximation one could differentiate (10.9) directly. In general, however, 
such closed form expressions for z are not readily available, in which case 
the formulas of Section 6 become useful. The application of these formulas 
to the three-site isotropic Heisenberg may be effected if we note that for 
Q - - 3  

{ ' ,  l t ,  ~ dzo)t = A(2)C(2) T(2) + z (3)f (10.11) 

T(2) + q- L6~22T(2) 4" 6J{32T(3)] "' t~3) 

where all the primes indicate derivatives with respect to ~ and we have 
noted that all matrices involved are one dimensional. By (6.4) we have 

( 1 T(3) (10.12) A(2)C(2 ) -- 1 + ~5 

and the resolvent matrix elements are given by the formulas in Appendix E 
as 

, 
•2  = 7 7 ~rO) (10.13) 

@32= 1 @22- 1 1+  1 T(3) 
7 7 
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In the present case the formulas for the derivatives of z may also be 
obtained by direct differentration of (10.10). If we identify X as temperature 
the above formulas lead to the internal energy and specific heat. Magnetic 
properties (with X the field strength) require the use of 2 • 2 transfer 
matrices T(j). 

11. SOME NUMERICAL RESULTS 

The free energy per site F/JN was computed in the Q = 2 and Q = 3 
approximations for the Heisenberg with antiferromagnetically signed J > 0 
models of Section 10. Results for spins s = 1/2, 1, 3/2,  2, 5 /2  are shown in 
Fig. 1. The (Q = 3)-site approximations are terminated at a temperature 
1/BcJ, where the approximation fails, as is evidenced by the radical in 
(10.10) becoming imaginary. This temperature for the failure of the Q = 3 
approximation is plotted in Fig. 2 as a function of 1/s, whence it is seen 
that the approximation avoids failure to lower temperatures as s increases. 

T 
F 

dN 

Bd 
o I 2 3 

S -  I 

- 2  

-1 

s=l 

s=2 

Fig. 1. The ( Q = 2)-site approximations to the free energy for spin-s linear chain Heisenberg 
models are shown in the solid curves, and the ( Q  = 3)-site approximations (which are the 
same to within the accuracy of this plot at higher temperatures, and higher spins) are shown in 
dashed curves. 
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0.4 

0.2 

o14 o18 ,12 i,'6 , Vs 

Fig. 2. The (reduced) temperature 1/3cJ at which the (Q = 2)-site approximation for the 
spin-s linear chain Heisenberg model fails. 

Further the Q = 2 and Q = 3 approximations agree more and more closely 
to lower temperatures as s increases. Thus for the larger spins s/> 3 /2  it 
appears the Q = 2 and Q - - 3  approximations are both rather accurate 
down to the temperatures given in Fig. 2. 

For  the s = 1/2 case we carried out numerical computations up 
through the ( Q = 9)-site approximation. The reduced transfer matrix com- 
ponents T(j) converge rapidly at higher temperatures. But at lower temper- 
atures (around 1/ f lJ= 1) the T(j) increase rapidly with j ,  numerical 
problems arise for larger j ( j  ~ 9 in our present program), and finally at a 
lower temperature the method fails, much as in the Q = 3 case. The failure 
temperature becomes lower as Q increases, though the shift is rather slow, 
so that for Q = 8 the failure temperature is 1/flcJ -~ 0.53 as compared to 
1/flcJ -~ 0.69 for Q = 3. Evidently the longer-range (large-j) ?(j) are rather 
important for this Heisenberg model at these lower temperatures. We note 
that although the T(j) become very large at lower temperatures, their ratios 
?(j) /?(j_ ~) appear to converge better, so that one might attempt to 
extrapolate the higher values of T(j) and use them in an extended approxi- 
mation. 

The specific heat for the s = 1 /2  model is shown in Fig. 3, where it is 
seen that it seems to converge (to within the accuracy of the plot) down to 
temperatures 1/Jfl-~ 0.66, whence the different approximations split apart 
and soon thereafter diverge. For the higher temperatures, 1/flJ ~ 0.7, 
the convergence appears to be very good, in comparison to straightforward 
finite chain calculations 0~ of the specific heat. For instance, the maximum 
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C/Nk 

0~- 

0.3 

02 

0.[ 

0=8 

Fig. 3. Some higher Q-site approximations to the specific heat of the spin s = 1/2 linear 
chain Heisenberg model. The divergent artifact of the approximation appears to move rather 
slowly to lower temperatures as the "order" of the approximation is increased. 

of the specific heat  is located to be C / N k = 0 . 3 4 9 9  at 1 / f l J =  
0.961, where the error in C / N k  is estimated as 0.0003, the difference in the 
values computed in the Q --- 7 and 8 approximations. 

12. HEISENBERG MODELS FOR DIMERS 

A type of Heisenberg model which is especially accurately soluble via 
the present techniques is that describing a collection 5 of weakly exchange- 
coupled dimers, the monomer  units of which are more strongly exchange- 
coupled. Here we shall assume a linear chain of dimers composed from 
doublet monomer  units. The dimers are identified as sites so that there are 
four site states: a singlet, labeled by S, and three triplets, labeled by their 
eigenvalues + ,  0 , -  to the s 7 operator for that site. The Hamiltonian we 
consider then is 

N N a,b a,b 
( 1 ) K E  E E2sic.Si+lc" H = J E 2sia" Sib + ~ + (12.1) 

i = 1  i = 1  e c '  

where a,b label the two monomer  units of a dimer. In terms of the X 

5See, e.g., Refs. 11-15. 
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operators this is 

N--1 

H = E Hii + 1 
i=1 

J Xi + + ~ - _ X ~  H . + ,  = 

+ 2K {(X/+~ + Xi ~ )(Xi~ + Xi ~  ) + (X i  ~  + Xi-~ ~ + Xi~ 

+ (Xi ++ - X i - -  ) ( X ~  - X+~-)} (12.2) 

where the changes involved on sites 1 and N are of negligible importance if 
N is large. 

Evidently H has local symmetry algebras ~i with basis 

A . =  XT, A,T= + Xi~176 + Xi - -  (12.3) 

Since Ai, is primitive the computation of t h e  T(j) with j /> 3 involves only 
the triplet (T) site states in t he j  - 2 sites between the two end sites of T( j ) .  
Further, since the coupling between an s state on one site and a T state on 
an adjacent state is the same for each of the T states, the portion of H,.+l 
surviving when site i is in an S state commutes with H i_ i i and Hi+l  i+2, so 
that (via the lemma of Appendix B) the end sites of T<j), j > 3, are 
necessarily in a T state in order to obtain a nonzero contribution. Also H 
displays a global $ ~(2)  symmetry so that the generalized transfer matrix is 
reduced to a 2 • 2 form 

"~SS, TT] ? :  ?<su  [ 

l--(2) 

-~ss, s s  I I (2) = ( S S  e -l~H~2 S S )  = e ~ 

+,0,- (12.4) 
ss ,  r r  = §  s s  _ 1 
<2> -<2> X (Sl~}e-en'=lS~>=v ~ 

1 .?-rr, rT" 
j>2 

Here the "~TT, TT given in terms partition functions T Zl_~i for a regular _(j) are 
Heisenberg chain of spin-1 sites 

J-27~ § "~TT, TT 1 r 
--(J) = -3 Zl--~J- /=IE =l-->j- i-<i+l) j (12.5) 

i - i  
Z,+," = Tr~r~exp - 2 i l k  Z s , -  S l +  1 

l=1 
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A 
The per-site partition function is then the maximum eigenvalue to T, 

z=�89  + t r r ' r r ) +  �89 + t r r ' r r ) 2 + 1 2 ] W 2  (12.6) 

a result which is exact. 
In addition to the standard high-temperature convergence of the series 

for -~rr,7"r, it displays a rapid low-temperature convergence for strong 
antiferromagnetically signed intrasite exchange J.  Indeed for J > 2[K I the 
ground state of the system is the simple product state of local singlet (S)  
symmetries, and because these local singlet symmetries are primitive, theft 
are treated exactly even by the leading ( j  = 2) term in the expansion for T. 
In fact the J dependence of -~7"v.rr is entirely due to a factor e - B ( j - I ) J  - - ( j )  

which tends to quench the effects of these higher-order terms when J is 
large and positive. In detail we find 

TT, TT 1 T 
(2) ~--- "3Z12  

CTT, TT 1 Z T I [ T T ]  2 
(3) ~- ~ 1--)3 - -  ~ ~,L'12) (12.7) 

Z ~  = e -Bg ( e 4~K + 3e 2BK + 5e -2/~K } 

Z v 1-~3 = e-2/3J { 3e6BK + eaBK + 8e2flK + 3 + 5e -2ilk .4- 7e -4flK ) 

which in conjunction with (12.5) and (12.6) yield a quite accurate [( Q 
= 3)-site] approximation when J > 21k I, which is the regime of interest if 
we are to reasonably speak of dimers. 

13. R A N D O M  C H A I N S  

The present cluster expansion approach can also be applied to random 
linear chains in which each 

Hii+l ~ nii+l(oli) (13.1) 

depends upon independent variables a i -- ( u i l , . . . ,  O~ig ) varying in accor- 
dance with a probability distribution ps(ai), 

f daiJPi(oii) = 1 

pi(ai) > 0 (13.2) 

For a scalar function q0 of the Hamiltonian Hi~ j we introduce the notation 
j - - I  ,g, (13.3) 

Then for two functions rp and O of Hl_,i and Hi .N ,  respectively, we have 

(vP(Hi__~i)O(Hi, N )5 = (qg(Hl_,i))(O(Hi__,N )> (13.4) 
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Now defining 

Ci rs ~ <Tri~NXiSrpi~N>/<Tri~NPi_~N> 

zi = <Tri-+NPi-~N>/<Tri+ 1-~NPi+ 1-~N) (13.5) 

and using (13.4) it follows that we can obtain equations analogous to those 
of (4.4) and (4.5). 

Next we consider an infinite linear chain with an average translational 
symmetry in the sense that the probability distributions Pi -= P are indepen- 
dent of i. Then defining c rs and z as in (4.6) and the transfer matrix T with 
elements 

rrs,t, = ~ l l__ <Tr,_ ,yx{r~,_ , jX/ .> (13.6) 
j>~2 Z j - 2  

we still obtain 

Tc = zc (13.7) 

Further much of the interpretation and developments following from this 
equation are similar to those of Sections 4-9. Hence we have a systematic 
method for solving not only random (generalized) Ising models exactly but 
also for solving various other (random) models approximately. 

14. C O N C L U S I O N  

The generalized transfer matrix method which we have introduced for 
solving linear models is seen to exhibit many of the same features the usual 
transfer matrix method exhibits in application to Ising-type models. For 
general linear models we find the present method becomes approximate in 
that the elements of the generalized transfer matrix become difficult to 
determine. However, even in truncating the expansion of these matrix 
elements in our Q-site decoupling approximation, results accurate through 
given orders in high temperature and perturbation expansions are retained. 
Indeed it seems that the method should be especially accurate for linear 
models differing only slightly from generalized Ising models, or more 
generally from models in which the low-lying states are eigenstates to site 
symmetries identified with single site states (as discussed in Section 7). In 
even more general circumstances we might view the present method of 
making Bonner- and Fisher-type extrapolations, using now not only the 
eigenvalue spectra of finite chains but also certain end-to-end correlation 
functions. However, for general models low-temperature convergence is not 
necessarily easily achieved, as is found in Section 11. Nevertheless accurate 
low-temperature results are obtained for some models which are not 
generalized Ising models, an example of which is found in Section 12. 
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APPENDIX A: LINEAR CHAIN FERMION MODELS 

We consider an electronic Hamiltonian H defined on an antisymmet- 
ric space. If H is expressed in terms of ordinary Fermion creation and 
annihilation operators one can carry out a Jordan-Wigner type of transfor- 
mation (16) to new Pauli-type raising and lowering operators, which in turn 
may be used rather directly but tediously to construct the desired X- 
operators. Here we follow a line of development in terms of a more general 
site representation. 07-19) In this representation we presume antisymmetric 
sites states such that the whole space for H is spanned by kets 

Irl A r 2 A . . .  A rN) (A.1) 

where r i labels the state on site i and the A-symbol indicates an antisymme- 
trized (or Grassman) product. Then H can be expressed as 

H =  E E ' r s A i + A i s  + E Ev~t"A,+~Aj+Aj.A~, + " ' "  (A.2)  
i rs i< j  rstu 

where the Ai+~ and Air are site-state creation and annihilation operators for 
state r on site i. These operators satisfy 

+ + A i r A j s  = ( - -  l'~nirnS~A +A + \ - I  "*js --ir 
+ - -  l'~nirnJ"A A + 

A i r A j s  - ( - - 1  **js--ir i ~=J 

AirAjs  ---- ( - -  1)n'~n"AjsAir 

A+ _ 8~Ais ir A is -- 

hirAi+s = ~rshirai+r (m.3)  

+ +  } Air Ais = 0 
s ~ O  

A isA ir = 0 

where hi�9 denotes the number of electrons in the state r on site i. 
The only restrictions placed upon H are that it be electron conserving 

and that it involve interactions between no more than nearest-neighbor 
sites. (It may be noted that one-site terms can be chosen to appear like 
nearest-neighbor pair interactions through the use of the identity ~,, �9149149 
= 1.) Now we define a type of Jordan-Wigner  transformed (17-~9) operator 

Xi  rs ~ ( -- l )  (nit -- nis)N'~i-'Ai+Ais (A.4) 

with NI~  i_ 1 being the number operator for the electrons on sites 1 through 
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i -  1. T h e n f o r i < j  

s i r %  tu = ( - -  1)(nir-nis)Nl~i- lAi+rAis(_ 1)(nj t -nju)Nl~j- i4j~Aju 

= (--1)(n"-"~)N'~'- '(_ 1)(nj,-"jO(N,oj-, +n,.-".)Ai+AisAj+Aj u 

= ( __ l)(n/ . -  n,.)U . . . . .  ( __ 1)(.j,- nju)Ni, j _ ,A j+AjuAi+Ais  

tu r$ = xj  (A.5) 

and we readily see that these X-operators satisfy (2.3) for all i and j .  Thus 
the set of operators 

{ x[r; ir ranging} (A.6) 

forms a complete commuting set for our space, which hence has a basis of 
kets of the form given in (2.7). Finally on comparing (A.2) to (2.4) and 
(2.5), we see that 

\ s rt~ su 
n i i +  I ----- E { 1 (  1 dr ~i, l] i su "~- �89 "~" ~i ,N_ l )~r , s  l 

rstu 

rstu l'lnit(ni+Is--ni+lc)~ ~ + J  A § z~ 
-1- l)ii+ 1( --  "1 J~*ir ~*it*'i+ ls~*i+ lu 

u \XnX  ~" (A.7) = E ( r ' s [ n i i + l [  t "  / i i+ ,  
rstu 

with 
\ rl~ ~ su 

( r .  s l n i i + , l t ,  u) = �89 + ~i , , ) ' i  su "~- �89 4- ~i N--1)~rt ' i  

dl " (__ l xtli~(ni+) Is- hi+ ,u)~)ii§ (A .8 )  

If nonnearest-neighbor interactions were allowed, the present Jo rdan-  
Wigner transformation would yield more complex interactions in terms of 
the X-operators. 

APPENDIX B: PROPERTIES OF ~1-~.+! 

We first wish to establish a working lemma: 

Lemma. If [Hi_]i, Hii+]]=O for some i ~  ( 2 , 3 , . . . ,  n) with n > 2, 
then ~l-~n+l = 0. 

Proof. Assuming the hypothesis of this theorem, we consider the first 
(l = 0) term of (3.4) 

Pl---~n+ ! = Pl--->iPi-->n+l 

so that this l = 0 term cancels with the l = 1 term for which i = i I. Now 
consider the other l = 1 terms 

( Pl--~ilPi~---~iPi--->n+ 1' i] < i 
pl___>itPil_>n+ 1 = (B.1) 

pl_~iPi~ i lP iv~n+l  , i I ~ i 



580 Klein and Welsher 

so that these other l = 1 terms cancel with the ! = 2 terms for which 
i @ ( i l ,  i2).  Similarly, the other l -- 2 terms (with i ~ ( i l ,  i2))  cancel with the 
l =  3 terms for which i E (il , i2,i3}, etc. Finally the l =  n -  2 term with 
j ~ (il . . . . .  i . -2)  cancels with the single l = n - 1 term, and the theorem 
is proved. 

This lemma leads directly to some useful results: 

Theorem B.1. If ~l--~n+l is expanded in powers of fl, then the first 
nonvanishing term is of order n, involving fin. 

Proof. We let Hii+l --~ii+ 1/t.+1 and consider first powers of these 
?Cs which may arise in ~l~n+l- Thus if H~;+I ~ 0  for some i = 1 to n, then 
from the lemma we see that ~ ] ~ . + 1 ~ 0  so that ~l_~.+g is at least linear in 
)~.+l. Hence ~1~.+1 is proportional to l'I~=l~..+l, and higher powers. But 
each of these ?~i+1 appears only along with a fl, so that ~1-~.+1 is 
proportional to/3", and higher powers. 

Theorem B.2. If H = H ~ + XV with a generalized Ising model and if 
~1-~+1 is expanded in powers of ?~, then the first nonvanishing term is of 
order [n/2], involving ~[./21, where [n/2] is (n - 1)/2 or n / 2  as n is odd or 
even. 

Proof. Here we let H.+ l = Hi~ + ?~V.+ 1 with the Hi~ the terms of 
the generalized Ising model. Now since all these H~~ mutually commute, 
our lemma implies that a term in the expansion in powers of these ?~'s will 
vanish unless it is, at least, first-order in ~i_ i~ or ?~.+1, with i = 2 to n. The 
lowest-order way in which this "nonvanishing" criterion can be achieved 
involves 1-I~n/2])k2i_ 12i. Setting all these )kjj+l equal to just X, we then obtain 
the theorem. 

APPENDIX C: PROPERTIES OF T AND z 

In the theorems of this appendix it will sometimes be of use to consider 
that the generalized transfer matrix T is defined by 

T ~'t~---'~ ~ Tr r X ' ~  X vw j )[vJ 2] (Cl) 
vw j ~ 2  

instead of by (4.7). 

Theorem C.1. At sufficiently high temperatures z is the nondegener- 
ate maximum eigenvalue to T. 

Proof. Because of the high-temperature properties of the ~'s, as 
discussed in Appendix B, we see from (3.6) that 

Z ~ Tr{~12~23~34 �9 �9 �9 i N - 1 N  ),  J~ ~- 0 (C.2) 
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and from (4.7), or (C.1), that 
s r  l u  T'S, '~ ~ TrI2(X l ~12X2 ) 

Thus combining these two results we obtain 

Z~Z[TN-'] '~''', 
st 

Then (since N---) oo) 

/3---0 

(c.3) 

(C.4) 

z -Ec'zN-'c '', B- o (c.s) 
s t  

where z is the maximum eigenvalue to T for which the corresponding 
eigenket c has 

~,  cSS~ 0 (C.6) 
s 

But from (C.3) we see that 

T r~''u-~ ( r "  ul e-B~':Is" t> ~- ,~rsS, u - f l ( r .  ulH,:ls" t>, B ~ 0 (C.7) 

so that on using a perturbation expansion of the T matrix about fl = 0, we 
find a single eigenvalue near 1 with all other eigenvalues near 0. Further, 
the eigenket associated with this nondegenerate maximum eigenvalue, near 
1, satisfies (C.6). Thus we identify this eigenvalue and eigenket, z and e, as 
in (4.6). 

Theorem 12.2. If H is an Ising-type model, then the elements of T 
are 0 except for a diagonal block identical to the conventional transfer 
matrix, and z is the nondegenerate maximum eigenvalue to T at all 
temperatures. 

Proof.  Using the site-states effecting the diagonalization, we see that 

T rs't" = Tr12(Xfre-~U':x~") = ~rs~tu e-fl(r'tlH'2jr" t) (C.8) 

and we recognize the nonzero block of T as the usual transfer matrix for 
Ising-type models. Now the maximum eigenvalue to T is already 
known (~-4) to be the per-site partition function and to be 6 nondegenerate 
at all fl > 0. 

Theorem C.3. If both T and z are obtained in the Q-site decoupling 
approximation, then their expansions in powers of fl are both accurate up 
through order Q. 

Proof.  In the Q-site approximation only the terms in (C.1) through 
j = Q are retained, and the lowest-order errors are contributed by the first 

6 See, for instance, Ref. 20. 
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omitted term ~l-.Q+~. Since Theorem B.1 implies ~1-~,Q+~ is at least of order 
Q, we immediately see that T and z are accurate up through order Q - 1. 

Now using~ the lemma of Section B we see, as in the proof to Theorem B.1, 
that the portion of ~l--,Q+l which is of order Q involves a linear combina- 
tion of products with each of the interactions H;i+l, i = 1 to Q, raised to 
the first power. Thus the lowest-order portion of the lowest-order term 
Tr ~X srr X tu~ l~Q+~t 1 sl-~Q+i 2 J, which is deleted from T, is a linear combination of 

Trl-~Q +I ( x;rn12H23 " '"  HQQ,XQ+I } (C.9) 

and similar terms merely with different orderings for the interactions. 
However, using the cyclic trace property (TrAB = TrBA) we may reorder 
each of these terms to the form in (C,9). For instance, 

Trl~4( X~rH23H12H34X~ u) = TrI_~a{ X~rHx3H34XI~H12 ) 

= Tr 1_~4 ( H i2X~rH23H34X,~ u ) 

= Tr,_,4 ( X~rHI2H23H34X~ u ) 

(c.10) 
Then since commutation of the various interactions would do no more than 
to achieve these same reorderings, we see that all these Qth-order terms 
cancel, and the only errors in T and z are of order Q + 1, and higher. 

Theorem C.4. If H = H ~ + XV with H ~ a generalized Ising model 
and if T and z are obtained in the Q-site decoupling approximation, then 
the expansions of T and z in powers of 2~ are both accurate up through 
order [( Q - 1)/2] + 1. 

Proof. The proof of accuracy up through order [( Q - 1)/2] follows 
readily from Theorem B.2, while the result for the last order again follows 
using the cyclic trace property, much as in Theorem C.3. 

APPENDIX D: NON-HERMIT IAN PERTURBATION THEORY 

Here we briefly consider the perturbation formulas for a real nonde- 
generate isolated eigenvalue z of a (possibly) non-Hermitian matrix or 
operator ~-. Since it is nondegenerate there  is a similarity transformation 
which isolates z in its own 1 • 1 block and there are both right and left 
eigenvectors, I ~  and (~1, for z: 

~-IqJ) = zl~ ) (D.l)  

= z( l 

Next we expand ~-, z, I~), and (q~[ in powers of a perturbation parameter 
with ~ ' ) ,  z (") , In), and (nl being the nth-order terms, i.e., the coefficients of 
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)~n in the corresponding expansion. Then the basic perturbation equations 
are 

( i fo )  _ z(O))lO> = 0 

( i f1)  _ z( l)) lo> + ( i fo)  _ z(O))ll> = o (D.2)  

(~(2) __ Z(2))I0 ) + (if(i) __ z( l ) ) l l  ) -I- ( i f0)  __ Z(0))I2 ) = 0 

etc. 
Now choosing the intermediate normalization 

( 0 1 0 )  = ( 0 l f f )  = 1 ( D . 3 )  

we have 

(0In) = 0, n / >  1 (D .4 )  

Then applying (01 to the equations (D.2), one obtains 

z( ' )  = (o l i f  1) Io) 

z (2) = (0tif 2) 10) + (01if')11) (D.5) 

In characterizing the perturbation vectors In) we find it convenient to 
introduce complimentary (non-Hermitian) projectors 

P = 10)(0l, Q ~ 1 - P (D.6) 

and the zero-order resolvent 

~ ~ O ( z(~ - i f~  + a P  ) - ~ a ,  a v~ O (D.7) 

[In terms of matrices the zero-order resolvent may be computed by first 
carrying out the similarity transformation block-diagonalizing the M x M 
matrix z (~ - if0) so that the zero eigenvalue appears in its own individual 
block, second inverting the complimentary (and nonsingular) ( M -  1)•  
(M - 1) block, and third performing the reverse similarity transformation.] 
Now noting that Q is orthogonal to P and commutes with if0), we note 

q~(z(O) _ i fo))  = Q (z(O) _ i fo) + a P  ) - '  Q(z (~ - ifo) + a P )  

= Q {z(O) _ ifo) + a e ) - I { z ( O )  _ o3-(0) + a P )  Q = Q 

( D . 8 )  

Thus applying the zero-order resolvent to the second of the equations of 
(D.2), we obtain 

II)  = QI1 )  = !'~(if') - z('))10 ) = ~ i f ' ) 1 0 )  (D .9 )  

and hence 

z (2) = (01{if 2) + ifx)c)Lif~ (D.10) 
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Clearly, with the present formulation, all these results bear a close resem- 
blance to the familiar case with ~0) Hermitian and (01 simply the adjoint of 
10). Similar remarks apply to the higher-order formulas, and those of 
double perturbation expansions also. 

APPENDIX E: FORMULA FOR THE ZERO-ORDER RESOLVENT 

A basic computation ~ satisfies is 

(z - f f )~  = 1 - CA* (E.1) 

From the (i, 2)-subblock of this matrix, i > 3, we find 
Q 

Z (z6/)-  ~-/j)~j,2= -C(i)A[2 ) (E.2) 
j = 2  

! 
z@-i / - 2  _ t O2 2 -  ~ C ( 2 ) A ~ 2 )  ~ i ,  2 = Z 6~t' '-1'2 - -  C(2)A-)~' z - - i -  2 , z 

so that all the blocks of ~ appearing in (6.6) are expressed in terms of the 
(2,2)-subblock. Using the (2,2)-block of (E.1) and then the final result of 
(E.2), we obtain 

Q 

j = 2  

(z - T ) % , 2  = 1 - C(2)A~2) - N T(j)C(2)A~2) (E.3) 
j=3 

6~,2, 2 = R 1 - E z j _  1 T(j)C(2)A~2) + ~C(2)A~2) 
j = 3  

where R is the generalized inverse to z - T. Since R is defined to be zero on 
the null space of z - T, these equations do not determine ~'. To find ~" we 
can use the condition that A t is in the left null-space of ~ ,  followed by the 
results of (E.2) and (E.3), to obtain 

Q 

E A~j)ql,j, 2= 0 
j=2  

O 

j=2  z j - 2  

= -  E 1 -  E 
j=2  Z j - 2  i=3 

Q �9 

+ ~2 ~ A~j)C(2)AI2 ) (E.4) 
j = 3  
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Next recalling (5.4), we find 

Q O 
~ A~j)C~2 ) = ~ A~tj)C<j)= ArC = 1 (E.5) 

j=2 j=2 

Now applying A(z ) to the right of (E.4) and dividing by A~z)A(2), we obtain 

Q " ~  Q Q 
= ~ A[j)Cc2 ) +  ~ ~ i - 2  

j=3 j=2 i=3 ;i~j---3 A(J) RT(i)C(2) 

our final result. 

APPENDIX F: LOWER BOUNDS TO THE GROUND STATE ENERGY 

Here we consider the ground state to H of (12.2), for certain values of 
the exchange parameters J and K. The product of dimer singlets is 
evidently an eigenvector with eigenvalue - J ( N -  1) for any values of J 
and K. Now we consider Bopp-type lower bounds 7 to the ground state of 
H. The energy of a normalized ket IxI') is 

N--1 
E ,  = ( f f ' [H]~)  = ~ Trii+l(nii+lPii+l) (F.1) 

i=1 

where Oii+l is the reduced density matrix obtained by a (partial) trace over 
the indices of all dimers other than i and i + 1, 

Pii+[ ~ Trl~i-1Tr ,+2- ,ul~)(~i  (F.2) 

Clearly Pii+l is positive semidefinite, Hermitean, and normalized (to 1). 
Now if we minimize the pair energies, 

r l ~ Trii+ l( a i i+  lPii+ 1) (F.3) 

by varying the t3i/+l independently subject to the above-mentioned con- 
straints, a lower bound to the true pair energies (computed with the true 
0~+ l) results. Hence a lower bound to E,~ also results. Since the eigenvalues 
to Hii+l are - J ,  O, J + 2 K ,  J - 2 K ,  and J - 4 k ,  we see that - J  is the 
lowest eigenvalue for J greater than 0 and greater than 2K. Thus the 
product of dimer singlets has an energy equal to this Bopp-type lower 
bound for J > 2K, 0. Further the ground state is nondegenerate, for these 
parameter values, since any other state would entail reduced density 
matrices with some local triplet component, so that a lower bound for such 
a state would be strictly greater than - J ( N  - 1). Similar remarks apply to 
the cyclic Hamiltonian of (12.1). 

7See, for instance, Refs. 21-24. 
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